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Cutoff Conditions in Three-Layer
Cylindrical Dielectric Waveguides

AHMAD SAFAAI-JAZI aND GAR LAM YIP, SENIOR MEMBER, IEEE

Abstract—Exact cutoff expressions for hybrid and circularly symmetric
modes in three-layer cylindrical dielectric wavegunides are derived. It is
analytically established that whenever the refractive index of the outer
medium (n5) is higher than either the refractive index of the core (n,) or of
the inner cladding (,), i.e., n; >n3 >n, or ny >n;>n;, the dominant HE,,
mode can have a nonzero cutoff frequency. Inequalities relating the
permittivities to the ratio of the cladding radius to the core radius, as
conditions for the nonzero cutoff of the HE,; mode, are determined. The
cutoff conditions presented in this paper are also applicable to similar
structures used in millimeter-wave communications.

I. INTRODUCTION

YLINDRICAL dielectric surface waveguides are

becoming increasingly promising in optical com-
munications. Much effort has been devoted to the analysis
of surface waveguides in recent years. Among the various
important aspects of dielectric waveguides, cutoff condi-
tions play a major role in the design of such structures
and the selection of operating frequencies. In certain
cases, a three-layer waveguide can be well approximated
by a rod for which exact cutoff expressions for all modes
are available [1], [2]. A cladded fiber with a large ratio of
the cladding radius to the core radius (r,/r,) is often
modeled by a dielectric rod [3].

There are, however, circumstances to which the dielec-
tric rod approximation either does not apply or is inade-
quate, especially when the dominant HE;; mode is to be
analyzed. In such cases as dielectric tube waveguides,
cladded and W-type fibers, new kinds of fibers proposed
by Kawakami and Nishida [4], in which the ratio r,/r; is
not sufficiently large, one has to deal with a three-layer
problem. Knowledge of cutoff conditions in the above
mentioned structures provides useful information about
the number of guided modes and waveguide dimensions.

Cutoffs for a dielectric tube have been derived for
modes with =0 and 1 only, n being the azimuthal
number [5]. Derivation of cutoff conditions for modes
with n>>1 in a tube and other three-layer dielectric struc-
tures are somewhat complicated, mainly because of the
hybrid nature of the modes. It appears that the problem of
cutoff conditions in three-layer dielectric waveguides has
not yet been comprehensively analyzed. More recently,
Safaai-Jazi and Yip [6] derived separate characteristic
equations for HE and EH modes in two- and three-layer
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cylindrical dielectric waveguides with discrete refractive
index profiles. After obtaining separate characteristic
equations for HE and EH modes, the derivation of the
corresponding cutoff conditions is no longer a difficult
task.

In this paper, exact cutoff expressions for a three-layer
dielectric structure with an arbitrarily discrete index pro-
file are presented. This analysis includes cladded fibers,
W-type fibers, dielectric tubes with n;=n, and tubes in
which the core has a lower refractive index than the outer
medium (n; >#,;), and vice versa (n, >ny).

Kawakami and Nishida [4], in their analysis of the HE,,
mode in a W-type fiber, found that there are situations
where this mode has a nonzero cutoff frequency. Our
investigation further reveals that besides the W-type fiber,
a tube in which n, >n;>n; can also sustain a HE;; mode
with a nonzero cutoff frequency. More generally, it can be
stated that whenever the refractive index of the outer
medium #; is higher than either the refractive index of the
core n; or that of the inner cladding n,, i.e., n,>n3>n, or
n,>n;>n;, the HE,, mode can have a nonzero cutoff.
Simple but exact conditions under which this mode ex-
hibits a cutoff are derived. Variations of cutoff frequen-
cies for several lower order modes in various types of
waveguides versus the ratio r,/r, are also presented.

The cutoff expressions presented in this paper are also
applicable to similar structures used in millimeter-wave
communications.

II. FORMULATION OF THE PROBLEM

Let us consider a cylindrical dielectric waveguide com-
posed of three layers as illustrated in Fig. 1. The ith layer
is characterized by a permittivity ¢, = €¢,; and a permeabil-
ity p,=po. Let n,=(¢,)'/? denote the refractive index of
the ith medium. The discrete refractive index profiles to
be used in the present analysis are shown in Fig. 2. Fig.
2(a) represents a cladded fiber. A dielectric tube usually
has an index profile as in Fig. 2(b), but profiles of Figs.
2(c) and (d) also represent tubular structures. The profile
of the refractive index for a W-type fiber is shown in Fig.
2(e).

The characteristic equations of a three-layer dielectric
waveguide having any of the index profiles of Fig, 2 are
given by (6), (7), and (11) in [6]. Equations (6) and (7) in
[6] are for TE and TM modes, respectively, while (11) in
[6]-represents HE and EH modes. Cutoff conditions are
obtained from the characteristic equations in the limit of
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Fig. 2. Profiles of refractive index for three-layer cylindrical dielectric
waveguides. (a) For a cladded fiber. (b), (c), and (d) For various types
of tubes. (e) For a W-type fiber.

B—ns, where B=f/k, is the normalized propagation
constant. Equation (11) in [6] in its present form, however,
is not suitable for the derivation of cutoff conditions.
Introducing the quantities 7, i=1, 2,---,6 and A, j=1,
2,---,5, defined in the Appendix, and using the identities
(A3) and (A4), (11) in [6] is rewritten as

f=n/B+{ = G, [(Gyf +4e.(e,T)° ]} /26, (1)

where G,, G, Gj;, and T are given in the Appendix.
Equation (1) now has the desired form for the cutoff
calculations. Equations (6) and (7) in [6] in terms of the
new quantities become

for TM modes

)
©)

€r1ﬁ1(€rzz;2 - ErBZS) - 5321_33 - €r2€r3zlﬁ6 =0,

7i/(8,—B8s) =B, —A7=0,  for TE modes.
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Let us first assume that €, %¢,5; then, upon letting w—0
and using the asymptotic values of 7= K, _(w)/wK,(w),
given in Table I, we obtain the following results:

DERIVATION OF CUTOFF CONDITIONS

m=n/3+ {Ezi 0[(E£)2+4€r1€r3E32]1/2}/2E1 4)
where for n>1
E =-¢,C
Ey=(g, +€,)(nC, /i1 =~ C) + €(€1 + €3)A,
E;=(e,—€2)(nC, /8 — Cy) +e(61 —€3)A4
Ey=nCy(1/ %2~ 1)) - ¢.B4
o=1
with
Ci=(¢- 1)[(€r2+ €r3)z2— €s(§—-1)/(n— 1)]
C,=(§— 1)[(€r2+ €3)Ay+ €A /(n— 1)}
and for n=1
Ei=¢4((—1)
E,=— (e4+ €r2)[Zl +(¢— 1)/17%]
E;=—(¢— €r2)[zl +(- 1)/5‘:1)‘}
Ey=(¢-1)(1/%*-1/m)
o=sgn ({—1).

Furthermore, whenever €, >¢5, + and — signs in (4)
correspond to EH and HE modes, respectively. This case
applies to cladded fibers, W-type fibers, and dielectric
tubes with refractive index profiles as in Fig. 2(c). For a
tube having an index profile as Fig. 2(d), + should be
used for HE and — for EH modes.

The HE,, mode in most familiar structures such as
dielectric rods, dielectric tubes with €, = ¢4, and cladded
fibers is known to have a zero cutoff frequency. In the
case of three-layer dielectric waveguides, however, this
mode does not always have a zero cutoff. To investigate
the cutoff condition of the HE,, mode let f—n; and
ko—0; then with the help of Table I, the characteristic
equation (4) in [6] reduces to

_V; — €r3(€rl + €r2)p(p - 1) + 2€r2€r3p(€rl — €r3)/(€r2_ €r3)
u|2 2€r2(€r1 + €r3) + (€r1 + €r2)(€r2 + €r3)(p - 1)

‘In (2/yw) (5)

where p=(r,/r,)’ and y=1.781 is the Euler’s constant.
For the profiles of Figs. 2(a)—(c), »,=+1, €, >¢3, and
€,>e¢,; thus as u, and w approach zero, (5) is always
satisfied, for both sides of it approach + oo, indicating
that the HE,;, mode has a zero cutoff frequency. For a
W-type fiber, »,= —1 and ¢, >€,;>¢,; hence the LHS of
(5)—— oo while the RHS of it may approach +co or
— 0. The RHS approaches — oo whenever the numerator
of the square bracketed term is negative, in which case the
HE,, mode has a zero cutoff. However, if the numerator
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is positive, (5) no longer holds, and as a result the HE,,
mode will have a nonzero cutoff frequency which is
obtained from (4) with — sign and n=1. Consequently,
the condition under which the HE,, mode in a W-type
fiber exhibits a nonzero cutoff is expressed as follows:

(€r3 + Er2)(€rl - E"2) 172
(€r3 - Er2)(€rl + €r2)

For a dielectric tube having a refractive index profile as
Fig. 2(d), »,= +1 and ¢,, >¢,;>¢,;. In a manner similar to
the cutoff analysis of the HE,; mode for a W-type fiber,
one concludes that this mode has a nonzero cutoff
frequency when the condition

(€r2 + €r3)(€r2 — Erl)
(‘€r2 - €r3)(€r2 + Erl)

is met where the cutoff is obtained from (4) with + sign
and n=1.

Using (2) and (3) with the help of Table I, cutoff
conditions for TE and TM modes are readily obtained.

€M (¢—1)+€,4,=0,  for TM modes (8)
M(¢—1)+A,=0,  for TE modes. 9)

It can be verified that in the limiting case of r,/r,—1, the
cutoffs for a cladded fiber reduce to those for a dielectric
rod.

The cutoff conditions for a tube in which €,; =€ can be
obtained from (4), (8), and (9) by letting x—0 and using
— sign for EH and + for HE modes in (4). It should be
noted that », is always —1 for this waveguide. Upon
letting x—0 and using Table I, the following results are
derived. For n> 1,

(frl + €r2)(2ncw1/ﬁ% - C2) + 4€r1€r234 - 5,1 C!/z = O (10)

Equation (10) gives cutoffs for HE modes whenever C; >0
and cutoffs for EH modes when C;<0. C;=0 never
occurs, because if C; becomes zero (10) reduces to

2(e2—€1) 2
muyuyd, (uy) Y, ()
which is not possible. Cutoff conditions for the cases n=0

and 1 had been obtained before [5] and thus are not given
here.

n
r

(6)

1/2

’
2
— <
r

™

=0

Iv. Core MoDE CUTOFFS FOR CLADDED FIBERS

In cladded fibers B varies from n; to n; for guided
modes. The frequencies at which S=n, have been re-
ferred to as core-mode cutoffs [3], although the concept of
cutoff, strictly speaking, does not really apply to them. In
other words, if the core-mode cutoff frequency of a cer-
tain mode is higher than the operating frequency, that
mode might still be present as a cladding mode, although
weakly confined to the core. For efficient signal transmis-
sion, core modes should be used. Hence, the role of the
core-mode cutoffs dominates over that of the cladding-

mode cutoffs (actual cutoffs, 8= n,). In deriving the core-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 11, NOVEMBER 1978

TABLE I
SMALL-ARGUMENT APPROXIMATIONS
n Jn-l(t) Yn-l(t) I“_l(t) Kn-l(t) Jn(Ct)Yn“:)
3 (6) £y (t) tI (%) TR () [T (O (D)
n2 Zn L4t | 2 1 1 (o320
2 ZrD]  2@e-D) TR I D WD
2 1 2 2
=1 L - = 1n(== 2 1 2
n 2 g “(y:) - :—Z -7 1"(7:‘> {c)
1 1 1
n=0 - e 1 =1 -
2 2 Yt > —_—— <
t ln(—z) 2 tzln(‘rt/Z) J

mode cutoffs, one may let B approach 7, in the core-mode
region (n, >B >n,) or in the cladding-mode region
(n,>B >n;). The continuity of the dispersion characteris-
tics at B=n, ensures that the results do not depend on
how S8 approaches n,.

After letting B—n, or equivalently letting », and #,—0
and using the small-argument approximations given in
Table 1, (1) becomes

fi=n/x*+ { G+ [((72’)2+4e,le,26_32}1/2}/2(71 (11)
where
G, =4¢€,1€,9/p
G,=H,  with the upper sign

G;=H, with the lower sign

Gy=4ne,q/px*+2nq[2e,+ (et €3)(g— 1) ] /w?
+(a+63) (>~ 1)Te— 2625+ €5(g—1/p)q/(n+1)
H=2g(n/w+7)[ 262(e. £ €3) + (62 + €3)(e, T )
(gD ]+2e,(e1%6,)S
(12 62)(62+ €3)(¢° — 1)

+exeit€r)q(q—1/p)/(n+1)

with g=(r,/r))*", p=(r,/r))* and S=1In (r,/r)) for n=1
and S=[p"~V—1]/2(n—1) for n>1. Also + and — in
(11) correspond to EH and HE modes, respectively. When
n=0, from (2) and (3) with the help of Table I,

€2(p'2=1)/2+ €3 p" s~ €,7,=0, for TM modes (12)

(p1/2_1)/2+p1/256—771=0, for TE modes. (13)

V. NUMERICAL RESULTS

Cutoff values for several lower order modes are ob-
tained by numerically solving the cutoff equations derived
in Sections III-V. Table IT summarizes the typical values
of permittivities used in cutoff computations. Plots of
cutoff frequencies versus the ratio r,/r, are presented.
The notation ¥, representing the normalized cutoff
frequency has the following definition:

2ar,  ——
Vc=% I€r1_€r2i .
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12 3 4 5 6 7 8 9 1
s
Fig. 3. Core-mode cutoff variations for the HE,,, HE,;|, TEy,, TMy,,

EH,,, HE;;, and HE,, modes versus r,/r, in a cladded fiber with
€1=2.341, ¢,=2.250, and €,;=1.000.

TABLE 11
PERMITTIVITIES FOR THREE-LAYER DIELECTRIC WAVEGUIDES
pernitti-{cladded |W-type tube tube tube
vitiles fiber fiber sr1=€t3 €r3>€r1 €r1>€r3
€.1 2.34) 2.250 1.000 1.000 1.210
ezz 2.250 1.822 2.250 2.250 2,250
Er3 1.000 2.205 %) 1,000 2,205 # 1.000

Actually, 7;=1.4849 has been used in the computations.

Fig. 3 shows the core-mode cutoffs for a cladded fiber.
It is observed that when r,/r,;>>1, the cutoff values of all
modes with the exception of the HE,, mode are very close
to their respective values in a dielectric rod with ¢, =2.341
and €,=2.250 [3], whereas for r,/r, <2.5 they consider-
ably differ from the cutoffs in the corresponding rod
approximation. This indicates that the dielectric rod ap-
proximation of a cladded fiber does not allow the ac-
curate evaluation of cutoffs for the HE;; mode in particu-
lar and for the lower order modes, when r, /7, is not much
larger than unity, in general.

Fig. 4 illustrates the variation of cutoff frequencies for
several modes in a W-type fiber. From (6) it is expected
that the HE;; mode should have a nonzero cutoff when
ry/ ¥, becomes greater than 1.0512. As Fig. 4 shows, the
cutoff behavior of this mode perfectly agrees with the
inequality (6). For r,/r,>1.2 there are virtually no or
little variations in the cutoffs of all modes, indicating that
the W-type fiber under investigation can be well-ap-
proximated by a rod with permittivities the same as those
of the core and the inner cladding of the fiber [4], [7]. Let
us define

A(kcrl) = (kcrl)TEo, - (kcrl)HE“

as the bandwidth of the HE|; mode, where k. =27 /..
For the cladded fiber of Fig. 3 at r,/r,=5, A(k,r,)=5.13,
whereas for the W-type fiber at r,/r, = 1.3, A(k,r;)=6.64.
Hence, a W-type fiber provides a wider bandwidth than a
cladded fiber, making it more practicable for single-mode
operation. A similar shifting effect of cutoff frequencies is
observed for other modes too. It should be understood,
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Fig. 4. Cutoff variations for the HE,,, TE,,, TM,,, HE,,, EH,;, HE;,,
and HE,;, modes versus r,/r; in a W-type fiber with €,=2.250,
€,,=1.822, and ¢,,=2.205.

TABLE III
CUTOFF V, VALUES FOR CLADDED FIBER AT r,/r| =5 AND FOR
W-TYPE FIBER AT r,/r;=1.3

cladding mode cutoffs core mode cutoffs cutoffs for W fiber!
mode cutoff value mode cutoff value mode cutoff value
HEII 0.0000 HEll- 1,0328 HEll 6.4468
My, 0.1293 HE, ) 2,4543 TEq, 10.7958
TEOl 0.1297 TEOl 2,5806 TM01 10.9731
HEZI 0.1508 TMO[ 2.5915 HEZI 11,4919
EHll G.2056 EHyy 3.8333 EH, 14,8992
HEIZ 0.2067 HE31 3.8541 HE31 15,3625
HE31 0.2311 HElz 3.9914 HEIZ 16.1066
ER, 0.2765 EH,, 5.1356 Eﬂzl 18.3636
TMO2 0.2961 HEhl 5.1589 HEbl 19,1133
TEOZ 0.2974 HEZZ 5.5424 TEOZ 20.6179
HE41 0.3030 TEOZ 5.6062 TMOZ 20,7976
HE ), 0.3089 TMOZ 5.6108 HE,, 21.3548
EHg 0.3442 EH31 6.3801 EH31 22,2032
HE, 0.3714 HE . 6.4050 HEg, 22,7824

LAE§12 0.3757 ER,, 7.0164 EH,, 25.0172

however, that the overall advantage of one structure over
another cannot be judged by their cutoff behaviors alone.
Other important aspects such as dispersion and radiation
loss also must be taken into account.

The cladding-mode cutoffs of a cladded fiber do not
convey much practical significance. They are generally
much lower than the core mode cutoffs. Table III
summarizes the cutoff ¥V, values of the 15 lower order
modes. A comparison of the cladding and the core-mode
cutoff values shows that even in the single-mode operation
a large number of cladding modes can get excited.

Cutoff variations for tubular structures are shown in
Figs. 5-7. Fig. 5 illustrates the cutoffs for a tube in which
€,1= €,5, while Figs. 6 and 7 show the cutoffs for tubes with
€, >¢€,5 and €, >¢,, respectively. The cutoff frequency of
the HE,, mode in tubes with ¢,>¢, is always zero,
whereas for the case ¢,; >¢,; with the help of inequality (7),
this mode is expected to have a nonzero cutoff as long as
ry/ r, remains less than 6.1706. The computed results for
the HE;; mode given in Fig. 7 verify the correctness of
(7). A comparison of Figs. 5-7 shows that the cutoff
values in the €, >¢, case are somewhat lower than the
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Fig. 5. Cutoff variations for the TE,,, TMy;, HE,,, EH,,, and HE;;
modes versus r,/r, in a tube with ¢,; = ¢,3=1.000 and ¢,, =2.250.

5 6.
/h

Fig. 6. Cutoff variations for the TEy,, TMy,, HE,;, EH;;, and HE,,
modes versus 7,/r, in a tube with ¢,,=1.210, ¢,=2.250, and ;=
1.000.

Fig. 7. Cutoff variations for the HE;;, TEy, TM,,, HE;,, EH};, and
HE,, modes versus r,/r, in a tube with €, =1.000, ¢,=2.250, and
€,3=2.205.

corresponding values in the €,; = ¢,; case which in turn are
much lower than those of the €3 >¢,, case: hence a tube in
which €, >¢,, is capable of providing a much larger band-
width, a clear advantage for single-mode operation. The

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 11, NOVEMBER 1978

TABLE IV
CUTOFF ¥, VALUES FOR TUBES AT r,/r; =3

’7 €r1>€r3 €r1:€r3 €r1<€r3
mode cutoff value mode cutoff value mode cutoff value
HEll 0.0000 HEll 0.0000 HEII 2.6753
TEOI 0.7397 TE01 0.8127 TE01 4,7376
TMO1 0,7973 TMO1 0.8892 TMOl 4.9164
HE21 0.8744 HE21 0.9468 HEZ1 6.0380
EHll 1.1852 EH11 1.3037 EHl1 6.9540
HE31 1.3194 HE31 1.4344 HESI 7.7818
HEIZ 1.4182 HEl2 1.6356 EH21 9.0246
EH21 1.5326 EH21 1.7282 HEAl 9.7178
HE41 1,7172 HE41 1.8740 EH31 11.2262
TE02 1.8170 TEOZ 2.0157 HE51 11.7335

: HEZZ 1.8461 HEZZ 2.0795 HEIZ 11.7496
EH31 1.9430 EHSI 2.1332 TEO2 12.3874
TMOZ 1,9569 THOZ 2.2089 TMOZ 12.6433
HES1 2.0967 HEil 2.2925 HEZZ 13.2320
Ele 2,2725 Ele 2.5189 EH‘,1 13.3383

cutoff values for the 15 lower order modes are given in
Table IV.

The numerical results presented above also reflect the
effects of the variations of ¢,; and ¢,, on cutoffs, since the
transformation of one structure into another may be
attributed to the changes in ¢,; and ¢,,. It is evident that an
increase in €, or ¢, results in a decrease in cutoff
frequencies. Finally, it is emphasized that the conditions
for the single-mode operation of a W-type fiber and of a
tube depend on the cutoff frequencies of both the HE,
and the next higher order mode (TEy;,, TM,,, or HE,)),
whereas the single-mode condition of a step- or a graded-
index optical fiber is determined by only the cutoff

frequency of the TM,,, mode.

VI

Cutoff conditions for all modes in three-layer cylindri-
cal dielectric waveguides with arbitrarily discrete refrac-
tive index profiles have been derived. In W-type fibers
and tubes in which €, >¢,3 >¢,, the dominant HE,; mode
may exhibit a nonzero cutoff. Conditions under which this
mode has a nonzero cutoff have been derived. Among the
tubular structures, a tube with ¢;>¢,,, and among all
three-layer structures with comparable parameters, the
W-type fiber provides the widest bandwidth for a single-
mode operation. Cutoff variations for several lower order
modes versus the ratio r,/r, and cutoff values for the 15
lower order modes in all cases have also been presented.

CONCLUSIONS

VII. APPENDIX
1) Definitions of 7; where i=1, 2, - -,6:
7= Z(x) = Z,,(u) _— Zm3(“1)
ro xZ,,(x) 2 ,Z,,(u;) 1 Z,5(1y)
Fa=v Z,(u) Z,5(,) Fo= Z,,{w) (A1)
4 U, Z, () Uy Z,3(145) ¢ WZ,4(w)

where m=n—1, x=kr, u;=kyr, u,=k,r,, and w=k,r,,

with
k= koVVi(fn' - EZ) )

i=1,2,3
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DEFINITIOE:OBFLI;EUXCTIONS z, T?= {nﬁ—[(l/fz - 1/1«7%) H,+ 6,2(1/17% - l/WZ)Zg‘,] }2
#a1 “a fas | Fee = "2[(91/)72 — €,/ ﬁ%)Hx + €r2(€r2/ ity — frs/Wz)Z4]
e e (/2 -1/ @) Hy+ o1/ B - 1/7)8,]
e H,= (6B 68) (B, B5) ~ (¢~ D[ 26,5,
and —(e+ frs)zs ] /5= [(frz + €r3)K2 - 2€r3ES W‘ / Wz}
L e>p? Hy=ey{n(eq = ¢ H /@ —ne, B[ (¢, % €,) /53
Tl esr (e 69/ (e )¢~ D[ Ea(26/ B
and the functions Z, are summarized in Table V. In —(62+€3)/ W) + A7i((€2+ €3) /T — 26,5/ 7 |
Table V, J, and Y, are the Bessel functions and I, and K — — —
are the motiified I—i’allkel functions of order . " - Erl(‘rZAZ - €r3A5)(A3 + A1’76) + Er2(A2 —4;)
2) Definitions of A; where j=1, 2,---,5: ,(€r253+ €r3zlﬁ6)}
A\=,—&, A,=£&iq,~ s where X? =, x%, @t =v,ul, @2 =r,u, and #*=p,w>

A, =Emi~ 0. Au=&(7n— 7 )7 — 7 5) Small-argument approximations: Table I summarizes
3=8N3N4— MM 4‘5(712“773)(’74_775) the asymptotic expressions for various terms with small
Z5 = (i - 1)ﬁ6 ( A2) arguments.
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