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Cutoff Conditions in Three-Layer
Cylindrical Dielectric Waveguides

AHMAD SAFAAI-JAZI AND GAR LAM YIP, SENIOR MEMBER, IEEE

,4bstract-Exact cutoff expressions for hybrid and circofarly symmetric

modes in three-layer cyfiidrieal dielectric wavegofdes are derived. It is

arrafytically established that whenever the refractive index of the enter
medium (rr~) is higher than either the refractive index of the core (q) or of

the imrer cladding (nz), i.e., n, >n~ >n2 or rrz>n~ >rrl, the doudoant HEll
mode can have a norrzero cntoff frequency. Inequalities relating the

permittfvities to the ratio of the cladding radius to the core radius, as
eonditiom for the noozero cutoff of the HEI1 mode, are determined. The
cutoff conditions presented in this paper are also appffcable to similar
structures used io milfiieter-wave eommmdcatioos.

L INTRODUCTION

c YLINDRICAL dielectric surface waveguides are

becoming increasingly promising in optical com-

munications. Much effort has been devoted to the analysis

of surface waveguides in recent years. Among the various

important aspects of dielectric waveguides, cutoff condi-

tions play a major role in the design of such structures

and the selection of operating frequencies. In certain

cases, a three-layer waveguide can be well approximated

by a rod for which exact cutoff expressions for all modes

are available [1], [2]. A cladded fiber with a large ratio of

the cladding radius to the core radius (rz/rl) is often

modeled by a dielectric rod [3].

There are, however, circumstances to which the dielec-

tric rod approximation either does not apply or is inade-

quate, especially when the dominant HE] ~ mode is to be

analyzed. In such cases as dielectric tube waveguides,

cladded and W-type fibers, new kinds of fibers proposed

by Kawakami and Nishida [4], in which the ratio rz/rl is

not sufficiently large, one has to deal with a three-layer

problem. Knowledge of cutoff conditions in the above

mentioned structures provides useful information about

the number of guided modes and waveguide dimensions.

Cutoffs for a dielectric tube have been derived for

modes with n = O and 1 only, n being the azimuthal

number [5]. Derivation of cutoff conditions for modes

with n >1 in a tube and other three-layer dielectric struc-
tures are somewhat complicated, mainly because of the

hybrid nature of the modes. It appears that the problem of

cutoff conditions in three-layer dielectric waveguides has

not yet been comprehensively analyzed. More recently,

Safaai-Jazi and Yip [6] derived separate characteristic

equations for HE and EH modes in two- and three-layer
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cylindrical dielectric waveguides with discrete refractive

index profiles. After obtaining separate characteristic

equations for HE and EH modes, the derivation of the

corresponding cutoff conditions is no longer a difficult

task.

In this paper, exact cutoff expressions for a three-layer

dielectric structure with an arbitrarily discrete index pro-

file are presented. This analysis includes cladded fibers,

W-type fibers, dielectric tubes with nl = n3 and tubes in

which the core has a lower refractive index than the outer

medium (rq >rzl), and vice versa (rzl >rq).

Kawakami and Nishida [4], in their analysis of the HEII

mode in a W-type fiber, found that there are situations

where this mode has a nonzero cutoff frequency. Our

investigation further reveals that besides the W-type fiber,

a tube in which n2 > n~ > n, can also sustain a HE I, mode

with a nonzero cutoff frequency. More generally, it can be

stated that whenever the refractive index of the outer

medium n~ is higher than either the refractive index of the

core n, or that of the inner cladding nz, i.e., n, > n3 >n2 or

nz > n3 >n ~, the HEI ~ mode can have a nonzero cutoff.

Simple but exact conditions under which this mode ex-

hibits a cutoff are derived. Variations of cutoff frequen-

cies for several lower order modes in various types of

waveguides versus the ratio r2/ rl are also presented.

The cutoff expressions presented in this paper are also

applicable to similar structures used in millimeter-wave

communications.

H. FORMULATION OF THE PROBLEM

Let us consider a cylindrical dielectric waveguide com-

posed of three layers as illustrated in Fig. 1. The ith layer

is characterized by a permittivity Ci= ~Oc,iand a permeabil-

ity p,= pO. Let n,= (~ri)’/2 denote the refractive index of

the ith medium. The discrete refractive index profiles to

be used in the present analysis are shown in Fig. 2. Fig.
2(a) represents a cladded fiber. A dielectric tube usually

has an index profile as in Fig. 2(b), but profiles of Figs.

2(c) and (d) also represent tubular structures. The profile

of the refractive index for a W-type fiber is shown in Fig.

2(e).

The characteristic equations of a three-layer dielectric

waveguide having any of the index profiles of Fig. 2 are

given by (6), (7), and (11) in [6]. Equations (6) and (7) in

[6] are for TE and TM modes, respectively, while (11) in

[6] represents HE and EH modes. Cutoff conditions are

obtained from the characteristic equations in the limit of
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Fig. 1. (Geometry of a three~layer cylindrical dielectric structure.
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Fig. 2. Profiles of refractive index for three-layer cylindrical dielectric
waveguides. (a) For a cladded fiber. (b), (c), and (d) For various types
of tubes. (e) For a W-type fiber.

~~~~, where ~= ~/kO is the normalized propagation

constant. Equation (11) in [6] in its present form, however,

is not suitable for the derivation of cutoff conditions.

Introducing the quantities Ti, i = 1, 2,. T0,6 and ~j, ~ = 1,

2,... ,5, defined in the Appendix, and using the identities

(A3) and (A4), (11) in [6] is rewritten as

1,=~/x2+ ( – G2t [(Gj)2+4Er,(tr2T)2 ]1’2)/2G1 (I)

where G,, G2, G;, and T are given in the Appendix.

Equation. (1) now has the desired form for the cutoff

calculations. Equations (6) and (7) in [6] in terms of the

new quantities become

%T,(%232- %3%) -#-

Tl(&-~5)-~S-Zlfi6=0,

Er2<r3z,fj6= o, for TM modes

(2)

for TE modes. (3)

899

111. DERIVATION OF CUTOFF CONDITIONS

Let us first assume that ~,1#erq; then, upon letting w–)*O

and using the asymptotic values of ‘ijfj’= K. - l(w),/ wK.(M)),

given in Table I, we obtain the following results:

fi,=n/~2+(E2~O[(E~)2 +4~,l.,SE:]l/2] /2EI (4)

where for n >1

El= – C,lC1

E2 = (c,l + ~,2)(nC1/ii; – Cz) + %2(%1 + E,3)~4

E~ = (e,l – e,2)(nC1/ii; – C2) + ~,z(% – %3)14

E3= rsCl(l/X2– l/s2;)-c,2&

#J=l

with

Cl ‘(~- 1)[($2+ E,3)~z- ~,3(’$-- l)/(n - 1)]

C2=(’$- l)[(6r2+ 6r3)i3+tr3z,/(n - 0]

and for n = 1

El=c,l($–l)

E2=–(6,1+ q2)[& +(&-1)/~?]

Ej=-(c,l-6,2)[& +(&l)/~?]

E3=(&–1)(1/x2– l/i-@

u=sgn (f– 1).

Furthermore, whenever c,] >6,3, + and – signs in ((4)

correspond to EH and HE modes, respectively. This case

applies to cladded fibers, W-type fibers, and dielectric
tubes with refractive index profiles as in Fig. 21(c). For a

tube having an index profile as Fig. 2(d), + should ‘be

used for HE and – for EH modes.

The HE,, mode in most familiar structures such as

dielectric rods, dielectric tubes with E,, = 6A, and cladd~ed

fibers is known to have a zero cutoff frequency. In the

case of three-layer dielectric waveguides, however, this

mode does not always have a zero cutoff. To investigate

the cutoff condition of the HE ~~ mode let ~F-+n3 and

kOeO; then with the help of Table I, the characteristic

equation (4) in [6] reduces to

V2

[

Cr3(q.1+ 6,2)P(P —1)+ 2~r2~.3~(%1 — %3
)/(’r2 – %’3)

7=
u, 26,2( 6,, + 6,3)+ (%, + %2)(%2+ %3)(P ‘“ 1) 1

. in (2/yw) (5)

where p = (r2/r1)2 and y = 1.781 is the Euler’s consta,nt.

For the profiles of Figs. 2(a)–(c), vz = + 1, c,l ~ %3) alnd
~,Z> •,~; thus as u, and w approach zero, (5) is always

satisfied, for both sides of it approach + m, indicating

that the HE,, mode has a zero cutOff frequerlcY. For a

W-type fiber, v2= – 1 and c,l >6,S > ~,z; hence tile LHSI of

(5)+ – co while the RHS of it may approaclh + m or

– m. The RHS approaches – m whenever the numera~tor

of the square bracketed term is negative, in which case the

HE1, mode has a zero cutoff. However, if the numerator
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is positive, (5) no longer holds, and

mode will have a nonzero cutoff

obtained from (4) with – sign and
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as a result the HEI ~

frequency which is

n = 1. Consequently,

the condition under which the HE,, mode in a W-type

fiber exhibits a nonzero cutoff is expressed as follows:

:>
[

(%+ %2)(%, - cr~) 1/21(%3-%2)(%,+%J“ (6)

For a dielectric tube having a refractive index profile as

Fig. 2(d), V2= + 1 and C,2>C,3 >C,l. In a manner similar to

the cutoff analysis of the HE1, mode for a W-type fiber,

one concludes that this mode has a nonzero cutoff

frequency when the condition

[ I(%2+ %)(%-%,) ‘/2
;< –

(%2- ‘,3)(%2+ %1)

(7)

is met where the cutoff is obtained from (4) with + sign

and n=l.

Using (2) and (3) with the help of Table I, cutoff

conditions for TE and TM modes are readily obtained.

E,,ij, (,$— 1)+ 6r2& =0, for TM modes (8)

fil(f-l)+a, =o, for TE modes. (9)

It can be verified that in the limiting case of rz/rl~ 1, the

cutoffs for a cladded fiber reduce to those for a dielectric

rod.

The cutoff conditions for a tube in which c,, = C,acan be

obtained from (4), (8), and (9) by letting x-O and using
— sign for EH and + for HE modes in (4). It should be

noted that VI is always – 1 for this waveguide. Upon

letting x-+0 and using Table I, the following results are

derived. For n >1,

(c,, + ~r2)(2~c1/ti;- c2) +4C,,@,- C,,c,/2=0. (10)

Equation (10) gives cutoffs for HE modes whenever Cl> O

and cutoffs for EH modes when Cl <O. Cl = O never

occurs, because if Cl becomes zero (10) reduces to

[

2(%2- %1) 2=0

77~l~2Jn(%) yH(~2) 1

which is not possible. Cutoff conditions for the cases n = O

and 1 had been obtained before [5] and thus are not given

here.

IV. CORE MODE CUTOFFS FOR CLADDED FIBERS

In cladded fibers ~ varies from n3 to n, for guided

modes. The frequencies at which D= n2 have been re-

ferred to as core-mode cutoffs [3], although the concept of

cutoff, strictly speaking, does not really apply to them. In

other words, if the core-mode cutoff frequency of a cer-

tain mode is higher than the operating frequency, that

mode might still be present as a cladding mode, although

weakly confined to the core. For efficient signal transmiss-

ion, core modes should be used. Hence, the role of the

core-mode cutoffs dominates over that of the cladding-

mode cutoffs (actual cutoffs, ~= rq). In deriving the core-

TABLE I
SMALL-ARGUMENT APPROXIMATIONS

I I

J“ n-l(’) ‘n-l(’) ‘,,-1(’) ‘“-,(’) ‘.(’’)’”(’)
tJn (t) tYn(t) IqT —

tkn(t) .n(t)Yn(c, )

n> 2 2“ 1

— -,-A z7F%- ‘“)2”

1..—
2(n+l)

2“
~z 2(.-1)

21
n. 1

2
~-li 1“ %) -~-+~2 1n (+) (.)2

1
n= 0

1 -1 1--
2

tzl”(~) + 7
,21.(7,/2)

mode cutoffs, one may let @approach n2 in the core-mode

region (n, > ~ > n2) or in the cladding-mode region

(n2 >~ >n3). The continuity of the dispersion characteris-

tics at ~= nz ensures that the results do not depend on

how ~ approaches n2.

After letting ~an2 or equivalently letting UI and U2-+0

and using the small-argument approximations given in

Table I, (1) becomes

{[ 3] }/G (11)fil = n/x2+ G2f ((Z~)2+4trlC,2G2 “2

where

ij = H, with the upper sign

~;= H, with the lower sign

~3 =4nc,2q/px2 +2nq[2c,z + (6,2 + q3)(q – 1) ]/w2

+(6,2+Er3)(q2– 1) ’ij-6-2Er2s+ %(q- l/P)q/(~+ 1)

“(r l)] +%(%., + 6,*)S

-(% * %2)(6,2+ %J(q2- 1)%

+ Cr2(E,,~ ~r2)q(q – l/p)/(n + 1)
with q = (r2/r1)2”, p = (r2/r1)2, and S= in (r2/rl) for n = 1

and S=[p(n–lj– 1]/2(n– 1) for n> 1. Also + and – in

(11) correspond to EH and HE modes, respectively. When

n = O, from (2) and (3) with the help of Table I,

%2(P ‘/2- 1)/Z+E,3P’i%G-~,lT,=0, for TM modes (12)

(p112– 1)/2+p1i~,– fi, =0, for TE modes. (13)

V. NUMERICAL RESULTS

Cutoff values for several lower order modes are ob-

tained by numerically solving the cutoff equations derived

in Sections III–V. Table II summarizes the typical values

of permittivities used in cutoff computations. Plots of

cutoff frequencies versus the ratio r2/rl are presented.

The notation VC representing the normalized cutoff

frequency has the following definition:
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Fig. 3. Cor&mode cutoff variations for the HE,,, HE21, T~l, Th401,
EH1,, HE31, and HE12 modes versus r2/rl in a cladded fiber with
c,, =2.341, ●rz= 2.250, and C,3= 1.000.

TABLE H
PERMHTIVJTIES FOR THREE-LAYER DIELECTRIC WAVEGLJSDES

p.rrnitti - CIadded w-type cube tub, tube

vicies fiber fiber er1=cr3
~r3>~rl ‘r1>Cr3

c,, ~ 2.341 2.25o 1.000 1.000 1.210

~rz
2.250 1.822 2.250 2.250 2.250

~,,~ 1.000 2.205 * 1.000 2.205 , 1.000

Actually, n~= 1.4849 has been used in the computations.

Fig. 3 shows the core-mode cutoffs for a cladded fiber.

It is observed that when r2/rl >>1, the cutoff values of all

modes with the exception of the HEI ~ mode are very (close

to their respective values in a dielectric rod with C,l = 2.341

and e,2= 2.250 [3], whereas for r2/ r, <2.5 they consider-
ably differ from the cutoffs in the corresponding rod

approximation. This indicates that the dielectric rocl ap-

proximation of a cladded fiber does not allow the ac-

curate evaluation of cutoffs for the HE1 ~ mode in particu-

lar and for the lower order modes, when rz/rl is not much

larger than unity, in general.

Fig. 4 illustrates the variation of cutoff frequencies for

several modes in a W-type fiber. From (6) it is expected

that the HEI ~ mode should have a nonzero cutoff when

r2/ rl becomes greater than 1.0512. As Fig. 4 shows, the
cutoff behavior of this mode perfectly agrees with the

inequality (6). For r2/ rl >1.2 there are virtually n.o or

little variations in the cutoffs of all modes, indicating, that

the W-type fiber under investigation can be wel,l-ap-

proximated by a rod with perrnittivities the same as those
of the core and the inner cladding of the fiber [4], [7]1. Let

us define

A(k.r,) = (~.~l)TEOl – (krI)HE,,

as the bandwidth of the HE,, mode, where kc= zlT/~c.

For the cladded fiber of Fig. 3 at r2/rl = 5, A(kCrl) = 5.13,

whereas for the W-type fiber at r2/rl = 1.3, A(kCrl) = 6.64.

Hence, a W-type fiber provides a wider bandwidth than a

cladded fiber, making it more practicable for single-mode

operation. A similar shifting effect of cutoff frequencies is

observed for other modes too. It should be understood,

12 HE21

~TMOI —.--.-:.-—-——
10

v,
r

TED,
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6
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4

2

0 . . ._— —L
1 11
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13
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Fig. 4. Cutoff variations for the HEI,, TEO1, TMoI, HEx, EHII, ~E:JI,

and HEL2 modes versus r2/ rl in a W-type fiber with C,l=2.250,

%2= 1.822, and <,3= 2.205.

TABLE III
CUTOFF V. VALUES FOR CLADDED FIBER AT rz/ r, = 5 AND FOR

W-TYPE FIBER AT r2/rl = 1.3 -

I
.I adding mode .uCoff. core mode cutoffs .ut. ffs f.. W fiber

!‘till 0.2036 r EH1l 3.8333
EH1l

14.8992

‘EL2
0.2067

‘E31
3.8541

HE31
15,3625

‘E31
0.2311 HE12

3.9914
HE12

16.1066

EH21
TM02

TE02

L

‘=41

“E22

‘H31

‘=51

En12 i

0.2765 EH21
0.2961

‘E41
0.2974

‘E22
0.3030 ‘E02
0.3089

‘“02
0. 3L42

‘H31
0.3714

‘E51
0.3757 EH12

5.1356

5.1589

5.5424

5.6062

5.6108

6.3801

6.4050

7.0164 L.
EN21

18,3636

‘E41
19.1133

20.6179
‘=02

TMO2
20.7976

E822
21.3548

EH31
22,2o32

HE51
22.7824

EB12
?5.0172

however, that the overall advantage of one structure over

another cannot be judged by their cutoff behaviors alone.

Other important aspects such as dispersion and radiation

loss also must be taken into account.

The cladding-mode cutoffs of a cladded fiber do nlot

convey much practical significance. They are generally

much lower than the core mode cutoffs. Table [11

summarizes the cutoff VC values of the 15 lower orcler

modes. A comparison of the cladding and the core-mode

cutoff values shows that even in the single-mode operation

a large number of cladding modes can get excited.

Cutoff variations for tubular structures are shown in

Figs. 5–7. Fig. 5 illustrates the cutoffs for a tube in which

C,l = 6,3, while Figs. 6 and 7 show the cutoffs for tubes with

erl >6,3 and e,3> C,l, respectively. The cutoff frequency of
the HE, ~ mode in tubes with c,, > C,3 is always zero,

whereas for the case 6,3>t,l with the help of inequality (7),

this mode is expected to have a nonzero cutoff as long as

r2/ rl remains less than 6.1706. The computed lresults for

the HEI, mode given in Fig. 7 verify the correctness of
(7). A comparison of Figs. 5-7 shows that the cutoff

values in the C,l >C,3 case are somewhat lower than the
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Fig. 5. Cutoff variations for the T~l, TMO1, H~l, EHII, and HE31
modes versus r2/rl in a tube with Crl= C,3= 1.000 and Crz= 2.250.
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Fig. 6. Cutoff variations for the TF&, T~l, H~l, EHIL, and HE31
modes versus r2/rl in a tube with C,l= 1.210, 6,2=2.250, and C,3=
I.000.
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Fig. 7. Cutoff variations for the HEll, TEOI, TMO1, H&,, EHII, and
HE31 modes versus r2/rl in a tube with c,l=l.OOO, <,2=2.250, and
% = 2.205.

corresponding values in thee.1=c,3 case which in tum are
much lower than those of the C,3>erl case: hence a tube in

which C,3>C,l is capable of providing a much larger band-

width, a clear advantage for single-mode operation. The

TABLE IV
CUTOFF V= Vi+nms FOR TUBES AT r2/rl = 3

c_. >E-- ! e.”, c.- 1 e.. <e.-,
IIIJ tlr~ 11,3

mode cutoff value mode ,utoff value mode cutoff value

HE1l
0.0000

‘=11
0,0000

‘En
2.6753

TEO 1
0.7397

TEO1
0.8127

TEO1
k.7316

~MO 1
0.7973

‘MO 1
0.8892

~Mo1 h.9164

rn~zl
0.8744

BE21
0.9468

RE21
6.0380

Enll
1.1852

EHIL
1,3037

EH1l
6.9560

HE31
1.3194

HE31
1.4344

‘E31
1.7818

H~12
1.4182

HE12
1.6356

ER21 9.0246

9.7178

11.2262

11.7335

11.7496

12.3874

12.6633

13.2320

13.3383

4

cutoff values for the 15 lower order modes are given in

Table IV.

The numerical results presented above also reflect the

effects of the variations of q.l and C,2on cutoffs, since the

transformation of one structure into another may be

attributed to the changes in Cr, and C,z. It is evident that an

increase in c,, or C,2 results in a decrease in cutoff

frequencies. Finally, it is emphasized that the conditions

for the single-mode operation of a W-type fiber and of a

tube depend on the cutoff frequencies of both the HEI,

and the next higher order mode (TEOI, TMO1, or H%l),

whereas the single-mode condition of a step- or a graded-

index optical fiber is determined by only the cutoff

frequency of the TMO1 mode.

VI. CONCLUSIONS

Cutoff conditions for all modes in three-layer cylindri-

cal dielectric waveguides with arbitrarily discrete refrac-

tive index profiles have been derived. In W-type fibers

and tubes in which C,z> C,3>C,l, the dominant HE1 ~ mode

may exhibit a nonzero cutoff, Conditions under which this

mode has a nonzero cutoff have been derived. Among the

tubular structures, a tube with C,j >C,l, and among all

three-layer structures with comparable parameters, the

W-type fiber provides the widest bandwidth for a single-

mode operation. Cutoff variations for several lower order

modes versus the ratio r2/ r, and cutoff values for the 15

lower order modes in all cases have also been presented,

VII. APPENDIX

1) Definitions of z where i= 1, 2,...,6:

Zm,(x) zn2(%) - zm3(u,)
VI ij2 = V2

= ‘1 Xznl(x) %%(%) ‘3= u*zn3(u,)

zm2(uJ ‘rn3(”2) _ = ‘m4(w)
~4 = ‘2 ~2zn2(u2) ‘is= U2zn3(~2) (Al)

‘6 wzn4(w)

where m= n— 1, x= klrl, ul=kzrl, u2=k2r2, and w=k3r2,

with

k,= ko~= , i=l,2,3
.
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TABLE V
DEFINITIONS OF FUNCTIONS Z.

{
z z

Zlll nz 2“3 “4

,1.1 ,1. -1 “2= 1 ,2. -1 V*= 1 .,2=. 1 “3. -1

J In Jm 1“ ~n Kn K.
n

and

[

1, C,i>J72
v, =

–1, Cri-@

and the functions Z. are summarized in Table V. In

Table V, ,Jn and Y. are the Bessel functions and In and K.

are the modified Hankel functions of order n.

2) Definitions of ~J wherej = 1, 2,, ..,5:

&=ij2–&j3 32=&-ij5

where

.g= ‘.2( U2)Z.3(U1)

‘.2( U1)Z.3(U2) “

3) The Bessel- and modified Hankel-function identities:

tB;(t)= tBn_l(t)–nBn(t) (A3)

where Bn can be Jn, Yn, or In. Also,

tK;(t) = – tK~_l(t)– nKn(t). (A4)

4) Expressions for G,, G2, Gj and T:

G2 = Ifz, with the upper sign

G;= HZ, with the lower sign
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T2= (n~[(l/x2- l/@) H,+t,2(l/E;- l/w2)&]]2

= n2[($. J%2 – er2/@H, + Er’(@ti; - cr3/w2)h4]

. [(1/x’- l/@H,+6r2(l/n;- l/@K4]

I )(X2–15)– n(f– 1){ [26,212HI= (6r2& – 6,3 5

- (%2+ ~r3)&]/& [(%,+ Er3)&-%&~l/~2}

H2= Cr2{~(~rl t C,2)H1/ii~– ~ErZ~4[ (crl f %z)/@

– (6., ~ 6r3)/w2] + n(cr, ~ %’)($ - l)[k(2%.2/ti2

- (%’+ q3)/w2) +~,%((%+ %)/@-%3/w2)]

- 6,,(.,2Z2- ,r,K,)(E,+I,fj,) z cr2@2-x5:)

“ (%J3+ d,%)}

where X2= Vlx 2, ii:= V2uf, ii:= vzu~, and %2= v3w2.

5) Small-argument approximations: Table I summarizes

the asymptotic expressions for various terms with small

arguments.
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